z^2-(2+2i)z+i=0

Simple and best practice solution for z^2-(2+2i)z+i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2-(2+2i)z+i=0 equation:


Simplifying
z2 + -1(2 + 2i) * z + i = 0

Reorder the terms for easier multiplication:
z2 + -1z(2 + 2i) + i = 0
z2 + (2 * -1z + 2i * -1z) + i = 0

Reorder the terms:
z2 + (-2iz + -2z) + i = 0
z2 + (-2iz + -2z) + i = 0

Reorder the terms:
i + -2iz + -2z + z2 = 0

Solving
i + -2iz + -2z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '2z' to each side of the equation.
i + -2iz + -2z + 2z + z2 = 0 + 2z

Combine like terms: -2z + 2z = 0
i + -2iz + 0 + z2 = 0 + 2z
i + -2iz + z2 = 0 + 2z
Remove the zero:
i + -2iz + z2 = 2z

Add '-1z2' to each side of the equation.
i + -2iz + z2 + -1z2 = 2z + -1z2

Combine like terms: z2 + -1z2 = 0
i + -2iz + 0 = 2z + -1z2
i + -2iz = 2z + -1z2

Reorder the terms:
i + -2iz + -2z + z2 = 2z + -2z + -1z2 + z2

Combine like terms: 2z + -2z = 0
i + -2iz + -2z + z2 = 0 + -1z2 + z2
i + -2iz + -2z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
i + -2iz + -2z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| d^2-16c^2/4c-d= | | -1/0 | | 2x+x+(x+8)=48 | | (2x+1)(2x^2+5x-1)=d | | 5x^2+x-4=o | | X-(2/3)=(1/18) | | (2x+1)(2x^2+5x-1)= | | 5+3=7-1 | | -3y=-2x+7 | | (-3/13)(26) | | 4(x+5.8)=8x+11.6 | | 22-2(g-7)=-14g | | 4-3x-lnx=0 | | 3a+9=5 | | 112+4m=336 | | -6+10x=24 | | (6+w)*w=135 | | (D^2-4D+4)y=8 | | 4(2m-3)-30=6(m-8) | | Ln(2x-2)=7 | | 2a^4b^/-1a^2b^5 | | 4(a+1)=5a+5-1 | | 9x+3=-78 | | 68=(3x-2)-(x+6) | | 10(-4+n)=-70 | | x^2+22*x=-105 | | 2x+38=x+38 | | 8+4x=-1+x | | 8(8m-1)+6(7m-1)=-14 | | 8=x-8 | | 5(x+6)=5(2x+3) | | a/3-1=20b |

Equations solver categories